

Mit finanzieller Unterstützung durch das EU-Programm Erasmus+

MODUL B Schweißmethoden

Aufteilung der Schweißmethoden

Schweißverfahren und deren numerische Bezeichnung

- Schmelzschweißen(0)
- Widerstandsschweißen(2)
- Flammenschweißen(3)
- Druckschweißen(4)
- Andere Schweißarten (7)
- Löten (9)

- Lichtbogenschweißen(1)
- Lichtbogenschweißen durch Schmelzen mit einer Elektrode (11)
- Lichtbogenhandschweißen mit einer beschichteten Elektrode(111)
- Schwerkraftbogenschweißen mit einer beschichteten Elektrode(112)
- Bogenschweißen mit Elektrode ohne Schutzgas gefüllt (114)
- Vibrationsschweißen

- Lichtbogenschweißen unter dem Flussmittel (12)
- Schweißen mit Lichtbogen unter dem Fluss mit Drahtelektrode (121)
- Lichtbogenschweißen unter dem Flussmittel durch eine Streifenelektrode (122)
- Lichtbogenschweißen in einer Schutzatmosphäre (13)
- Lichtbogenschweißen mit Elektrode in Inertgas-MIG (131)
- Bogenschweißen mit Elektrode in Schutzgas gefüllt (132)

- Lichtbogenschweißen mit einer mit Metallpulver gefüllten Elektrode in einem Inertgas (133)
- Lichtbogenschweißen durch Schmelzen mit einer Elektrode in Aktivgas-MAG(135)
- Bogenschweißen mit Elektrode in Aktivgas gefüllt (136)
- Lichtbogenschweißen mit einer mit Metallpulver gefüllten Elektrode im Aktivgas (137)
- Lichtbogenschweißen mit nicht elektrisch isolierendem WIG-Inertgas (141)

- Lichtbogenschweißen Nicht-WIG-Schweißen ohne zusätzlichen Draht (142)
- Nicht-WIG-Lichtbogenschweißen mit einer gefüllten Elektrode oder Stange (143)
- Plasmaschweißen (15)
- ► MIG-Schweißen mit Plasma (151)
- Magnetbogenschweißen (185)

Widerstandsschweißen

- Punkt-Widerstandsschweißen (21)
- Nahtschweißung (22)
- Roll-on-Nahtschweißen (222)
- Ausgabe (23)
- Löschkontaktschweißen (24)
- Druckkontaktschweißen (25)
- Hochfrequenz-Widerstandsschweißen (291)

Flammenschweißen

- Sauerstoff-Acetylen-Schweißen (311)
- Sauerstoff-Propan-Schweißen (312)
- Sauerstoff-Wasserstoff-Schweißen (313)
- Druckschweißen(4)
- Ultraschallschweißen (41)
- Reibungsschweißen (42)

Flammenschweißen

- Schmieden (43)
- Explosives Schweißen (441)
- Diffusionsschweißen (45)
- Druckschweißen mit Flammenheizung (47)
- Druckkaltschweißen (48)

Andere Schweißarten

- Aluminium-thermisches Schweißen (71)
- Elektroschlacke Schweißen (72)
- Elektrogasschweißen (73)
- Induktionsschweißen (74)
- Lichtstrahlschweißen (75)
- Laserschweißen (751)
- Elektronisches Schweißen (76)
- Lagerbolzen (78)

11

Löten

- ► Hartlöten(91)
- -Weichlöten(94)

Beschriftungsmethoden zum Schweißen

- Einige Schweißverfahren werden allgemein als Abkürzungen bezeichnet. Dies sind die Abkürzungen unten :
- MAG Metal Aktiv Gas (Schweißen im Schutz von aktivem Elektrodengas),
 zB C02, Mischgase und dergleichen.
- MIG Metal Inert Gas (svařování v ochraně inertního plynu tavící se elektrodou – německy), např. argon, směsné plyny apod.
- MOG Metal ohne Gas (Schweißen ohne Schutzgas deutsch)
- WIG Wolfram Inert Gas (Schweißen im Schutzgas ohne Elektroden)
- TIG Tungsten Inert GAS (gleiche Bedeutung wie WIG Englisch)

Eigenschaften ausgewählter Schweißverfahren

- FlammenschweißenRuční obloukové svařování obalenou elektrodou
- WIG-Schweißen (WIG)
- MIG / MAG-Schweißen
- Widerstandsschweißen
- Lichtbogenschweißen unter dem Flussmittel
- Spezielle Schmelzverarbeitungsverfahren

Flammenschweißen

- Diese Methode wird für dünne Bleche mit einer Dicke bis 4 mm verwendet.
- Sein Vorteil ist der geringe Wärmeeintrag.
- Schweißtechnik ist rechts oder links.
- Beim Schweißen fügt der Schweißer gewöhnlich dem geschmolzenen Bereich zusätzliches Material hinzu und bildet eine Schweißperle.
- Folgende Faktoren beeinflussen den Flammschweißprozess :
 - chemické složení svařovaného materiálu,
 - Dicke des geschweißten Materials,
 - thermischer Einfluss des Grundmaterials,
 - Schweißposition.

Lichtbogenhandschweißen mit einer beschichteten Elektrode

- Bei dieser Methode wird ein elektrischer Lichtbogen als Wärmequelle verwendet.
- Der Lichtbogen brennt zwischen beschichteten Elektrode und Basismaterial.
- Ein Lichtbogen ist im Wesentlichen eine elektrische Entladung, die bei normalen Temperaturen und Drücken brennt.
- Diese Methode kann in allen Positionen geschweißt werden.
- Der Schweißstrom reicht von 10 A bis 2000 A, die Lichtbogenspannung liegt im Bereich von 10 V - 50 V.
- Die Temperatur im Schweißlichtbogen beträgt ungefähr 5000 °C.

WIG-Schweißen (TIG)

- Diese Schweißmethode besteht darin, den Lichtbogen zwischen der nichtschmelzenden Elektrode und dem geschweißten Material zu verbrennen.
- Ein Schutzgas wird zum Schutz des Lichtbogens verwendet.
- Als Schutzgas werden Argon, Helium oder Mischungen davon verwendet.
- Das beim Schweißen verwendete Zusatzmaterial hat normalerweise die gleiche Zusammensetzung wie das Basismaterial.
- Es ist sowohl als Wechselstrom als auch als Gleichstrom verschweißt.

MIG/MAG-Schweißen

- Bei diesem Schweißverfahren wird die Elektrode als Draht auf die Spule aufgewickelt.
- Beim Schweißen schmilzt die Elektrode.
- Das MIG-Verfahren (131) verwendet ein inertes Schutzgas, wobei das Mag (135) -Gasverfahren aktiv ist.
- Sowohl MIG- als auch MAG-Verfahren können leicht mechanisiert und robotisiert werden. Ihr Einsatz in der Praxis ist sehr breit.

Widerstandsschweißen

- Diese Methode gehört zum Druckschweißen.
- Bei diesem Verfahren wird Wärme nicht von außen zugeführt, sondern direkt in der Schweißnaht erzeugt.
- Kennzeichnend für dieses Schweißen sind hohe Schweißgeschwindigkeiten, das Schweißen in Positionen, die meisten Metalle können geschweißt werden, und zwar sowohl in kleinen als auch in großen Serien.

Lichtbogenschweißen unter dem Flussmittel

- Dieses Verfahren wurde entwickelt, um die Menge an geschmolzenem Schweißmetall zu erhöhen.
- Es ist hochproduktiv, die Schweißnähte sind aufgrund des großen Eindringens in das Grundmaterial und der hohen Stromdichte von hoher Qualität.
- Diese Methode hat einen stark wärmeeinflussenden Bereich.
- Nachteil ist die schwierige Vorbereitung der Schweißflächen, hohe Anforderungen an die Sauberkeit.
- ► Kann nur in PA- und PB-Position geschweißt werden.

Spezielle Schmelzverarbeitungsverfahren

- Mit der Entwicklung verschiedener Industrien geht der Schweißprozess Hand in Hand, es werden neue Materialien verwendet, geschweißte Materialien unterschiedlicher Dicke und schwer zu schweißende Materialien.
- Beim Schmelzschweißen treten Verfahren mit einer hohen Konzentration an thermischer Energie auf einer kleinen Aufprallfläche auf.
- Dies sind hauptsächlich Laser-, Plasma- oder Elektronenstrahlschweißen.

Fragen zum Nachdenken

- 1. Wo ist die numerische Bezeichnung der Schweißmethoden angegeben?
- 2. Wie sind Flammschweißverfahren numerisch gekennzeichnet?
- 3. Wie wird das Lichtbogenschweißverfahren numerisch verwendet?
- 4. Wie werden elektrische Widerstandsschweißmethoden numerisch gekennzeichnet?
- 5. Wie werden numerische Verfahren zum Druckschweißen eingesetzt?

Informationsquellen

- AMBROŽ, O. A KOL. Technologie svařování a zařízení: učební texty pro kurzy svářečských inženýrů a technologů. Ostrava: ZEROSS, 2001, 395 s. Svařování. ISBN 80-85771-81-0.
- BERNASOVÁ, E. A KOL. Svařování. Praha: SNTL, 1987. ISBN 04-221-88.
- KOUKAL, J., SCHWARZ, D., HAJDÍK, J. Materiály a jejich svařitelnost. 1. vyd. Ostrava: VŠB – Technická univerzita Ostrava, 2009, 240 s. ISBN 978-80-248-2025-5.
- KUBÍČEK, J. DANĚK, L. KANDUS, B. Technologie svařování a zařízení. Učební texty pro kurzy svařovacích inženýrů a technologů. Plzeň: ŠKODA WELDING, s. r. o., 2011, 242 s.